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* Combined-light methods These techniques do not
] ] resolve the planet as
— Radial Ve|OCIty separate from the star:
T . telescopes used as
— lransit “light buckets”
— Microlensing
— Pulsar timing
— Astrometry

* Starlight suppression methods  Planets resolved as
separate objects.
— Coronagraph
— Starshades
— Interferometer
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System Requirements

Angular Resolution
Contrast
Inner Working Angle
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Angular Resolution:

Jet Propulsion Laboratory

s Some numbers to keep in mind

* A 50-cm space telescope equipped with a coronagraph is capable of
characterizing the debris disks around ~1 nearby star (epsilon Eridani).

* A 1.5-m space telescope would enable compelling exoplanet science to
study planets larger than the Earth — Jupiter and Saturn type planets.

* A space telescope 4-m or more in diameter is needed to survey and
detect a reasonable sample of nearby Earth-like planets

®* To image the surface of a planet around a nearby star we would need a
telescope ~30 km in diameter.
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w0 emmmmieee - The Spectrum of an Earth-like Exoplanet

At mid-infrared
wavelengths,
exoplanets shine
because they
are warm

1 October 2013

At visible
wavelengths,
exoplanets

shine in reflected
starlight
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Why Is a Space Mission
Needed?

Wavefront Errors
Ground-based vs Space-based Imaging
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760-840 nm 760-778 nm 778-792 nm 792-808 nm 808-824 nm 594 840 nm
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= Exoplanet Instruments 2012-2020

Extreme AO on 8-10-m class telescopes

ESO VLT-SPHERE Subaru SCExXAO

Palomar P1640 Gemini Planet Imager

Extreme AO on Extremely Large Telescopes (30—-42m diameter)

Thirty Meter Telescope European Extremely Large Telescope  Giant Magellan Telescope

-

1 October 2013 NASA’s Exoplanet Program Technology Needs - Lawson 8



National Aeronautics and

Discovery Space of Existing and Near-term

Jet Propulsion Laboratory

e Ground-based Coronagraphs

Mirror Diameter (m) for Inner Working Angle of 2 A/D at 750 nm
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Discovery Space of Extremely Large

Telescopes

Mirror Diameter (m) for Inner Working Angle of 2 A/D at 750 nm
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* Predicted performance
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Coronagraph Technology
Challenges

Diffraction Control
Speckle Suppression
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1\&\\% =EET - Step 1t Diffraction control

S0 mRER=e used to selectively reject starlight

* A diffractive optic is used to remove star-light from the field of view,
while allowing the planet light to be detected

— A fixed optic (does not move)
* e.g. an image plane mask in a coronagraph, or the occulter of an external
coronagraph

— Mathematically may have perfect performance
— In practice may have subtle imperfections

®* Concepts in Fourier Optics provide a wide variety of possible solutions

Occulting
Mask Detector

Aperture

Sivaramakrishnan et al. ApJ 552, 397 (2001)
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Phase \
&~ Plates \,\

. \ Shear ]I
NBS2 o v Mechanism

4/777 k ' -

=> From OTA BS1 = Arm2

S
Combined \S//
Beams

Image Plane Amplitude & Phase Image Plane Pupil Shearing
Mask (Trauger, JPL) Phase Mask (Serabyn, JPL) (Clampin, NASA GSFC)

Pupil Masking (Vanderbei, Univ. Princeton)
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e oney - COMpPeNsates for imperfections in Mask
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* Wavefront compensation is required, with tolerances set by the desired

planet/star contrast
— Two deformable mirrors are needed for simultaneous phase & amplitude
correction over a full field
— The Talbot effect causes phase errors to give rise to amplitude errors

®* Modulation of the wavefront is used to measure and suppress speckles
— Deformable mirrors are modulated to detect coherent speckles

— Angular Differential Imaging and Spectral Deconvolution are other forms of
modulation that can be used to improve sensitivity in post-processing

760-840 nm 760-778 nm 778-792 nm 792-808 nm 808-824 nm 824-840 nm
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* Xinetics (NGAS) deformable mirrors
have been used to demonstrate
contrasts of 2 x 1010

— Routinely used in vacuum at HCIT
— Vibration tested at JPL

®* Boston Micromachines (MEMS)
deformable mirrors demonstrated
contrasts of 10® 48x48 Xinetics DM vibration
— Low-power, low mass tested at JPL

— Flown on PICTURE (Chakrabarti,
Boston University)

DMs have not yet been flown but are at a high TRL
Further advances in MEMS DM technology are of great interest
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PM shape: (Thermal and Jitter) Secondary:
24=25=26=28=210=0.4 nm P Thermal: Ax=65 nm,
27=0.2 nm, z11=212=5 pm ! AZ=26 nm.,
f tilt=30 nrad
Jitter: 20x smaller

Laser metrology:

offset=0.3 mas
amplitude=0.3mas

AL=25nm
Af=1x10% Laser metrology
- f required for
vaskcenvaor: ol sensing and control

Fold mirror 1:
rms static surf =0.85nm

Thermal: 10nrad, 100 nm
Jitter: 10 nrad, 10 nm amasrigd ~

at4A/D

body pointing

Figure 5. We identify the major engineering Key reqUIrementS

requirements to meet the dynamic error budget. [}
Thermally induced translations lead to beam walk ! 1_2 OrderS Of
that is partially compensated by the secondary

mirror. Jitter is partially compensated by the fine magnItUde tlghter
guiding mirror. :

for a 3.8-m telescope
operating at 2A/D

Coronagraph optics motion:
Thermal:10nrad, 100nm
Jitter: 10 nrad, 10 nm

S. B. Shaklan, L. Marchan, J. J. Green, O. P. Lay, “Terrestrial Planet Finder Coronagraph Dynamics
Error Budget,” Proc. SPIE 5905 (2005).

S. B. Shaklan, L. F. Marchan, J. E. Krist, M. Rud, “Stability error budget for an aggressive coronagraph
on a 3.8-m telescope,” Proc. SPIE 8151, San Diego, August 2011.
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Table 1: Coronagraph Laboratory Results
Design Facility A AX Mean Raw Trmin Tmas A Hole Field Throughput
(nm) (%) Contrast (A/D) (A\/D) (deg) Shape (\/D)? (%)

BLHL  4'" order =~ HCIT 800 2 1.2e-10 3.1 15.6 180 D 283.8
BLHL 4" order =~ HCIT 800 10 3.2e-10 3.1 15.6 180 D 283.8
BLHL  4'" order =~ HCIT 800 20 1.3e-09 3.1 15.5 180 D 285.6
PIAA Prolate ACE 650 4.4e-07 1.2 2.0 140 3.1
PIAA Prolate = HCIT-2 808 5.7e-10 1.9 4.7 180 12.7
PIAA Prolate = HCIT-2 800 1.8e-08 2.2 4.6 180 9.9
SPC Ripple 3 HCIT 800 : 1.2e-09 4.8 13.8 82 80.9
SPC Ripple 3 HCIT 800 2.5e-09 4.8 13.8 82 80.9
VNC e =0.25 GSFC 633 : 5.3e-09 R 2.5 28 1.0
V'A% TC4 HCIT 785 3.6e-09 2.6 12.2 180 173.8
V'A% TC4 HCIT 800 : 1.7e-08 2.4 9.9 180 65.9
V'A% TC4 HCIT 800 2.9e-08 2.4 94 180 59.8
V'A% TC4 HCIT 800 : 4.3e-08 2.4 9.1 180 55.4
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State-of-the-Art in Coronagraph Laboratory
Experiments with a 10% bandwidth
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A Coronagraph for an Astrophysics Focused

e Telescope Asset (AFTA)

Secondary Mirror Support Structure
(SMSS) w/ Cover

Secondary Mirror Support Tubes

Primary Mirror ;
(PM) yJ B SN Forward Metering Structure

(FMS)

Aft Metering Structure - i . .
. - Alignment Drive Tubes
W (ADT)

Main Mounts

Main Mount Corner Block (MM)

(MM CB)

The central obscuration and struts make the design of a coronagraph challenging.
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Starshade Technology
Challenges

Diffraction Control
Formation Flying
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s used to shade starlight from the telescope

® Oceculter casts a deep shadow on the telescope
— Starshade is several times larger in diameter than the telescope primary
— Has a perimeter that diffracts starlight tangentially (thus the petals)
— Is located far enough away to provide the required inner working angle
— Formation flying is used to orient and position telescope wrt occulter

®* The error budget is concerned only with the profile and orientation of
the starshade with respect to the telescope — not the telescope itself

— The error budget terms are measurable in fractions of millimeters, not
fractions of nanometers
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State-of-the-Art in Starshade Experiments
with a 50% bandwidth

:
§

T
Equivalent Angle (mas)

T T Ty

NGAS Laboratory
Test (2010)

NGAS Desert Test
(2013)

(x axis scale by 1/6)

Starshade Contrast Map on a Log Scale

00 100
Equivalent Angle (mas)

8 10
Angular Separation (A/D)

NASA’s Exoplanet Program Technology Needs - Lawson




g National Aeronautics an
Space Adminis tratio

1 October 2013

d
n

Jet Propulsion Laboratory

California Institute ol

Pasadena, California

f Technology

Summary and Perspective
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Mirror Diameter (m) for Inner Working Angle of 2 A/D at 750 nm
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* W. A. Traub and B. R. Oppenheimer, “Direct Imaging of Exoplanets,” in
Exoplanets, S. Seager ed. (University of Arizona Press: Tucson AZ,

2010)

* B. R. Oppenheimer and S. Hinkley, “High-contrast observations in
optical and infrared astronomy,” Ann. Rev. Astron. Astrop. 47, 253-289

(2009).

* P.R.Lawson, ed. “Exoplanet Exploration Program Technology Plan
Appendix: 2012,” Jet Propulsion Laboratory, JPL Doc 77698

— http://exep.jpl.nasa.gov/technology/
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